skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramamurthy, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Architectural optimizations in general-purpose graphics processing units (GPGPUs) often exploit workload characteristics to reduce power and latency while improving performance. This paper finds, however, that prevailing assumptions about GPGPU traffic pattern characterization are inaccurate. These assumptions must therefore be re-evaluated, and more appropriate new patterns must be identified. This paper proposes a methodology to classify GPGPU traffic patterns, combining a convolutional neural network (CNN) for feature extraction and a t-distributed stochastic neighbor embedding (t-SNE) algorithm to determine traffic pattern clusters. A traffic pattern dataset is generated from common GPGPU benchmarks, transformed using heat mapping, and iteratively refined to ensure appropriate and highly accurate labels. The proposed classification model achieves 98.8% validation accuracy and 94.24% test accuracy. Furthermore, traffic in 96.6% of examined kernels can be classified into the eight identified traffic pattern categories. 
    more » « less